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Abstract: Purpose: This study examines GPT-4o’s ability to communicate effectively with
relatives of patients undergoing decompressive hemicraniectomy (DHC) after malignant
middle cerebral artery infarction (MMCAI). Methods: GPT-4o was asked 25 common
questions from patients’ relatives about DHC for MMCAI, twice over a 7-day interval. Re-
sponses were rated for accuracy, clarity, relevance, completeness, sourcing, and usefulness
by board-certified intensivist* (one), neurologists, and neurosurgeons using the Quality
Analysis of Medical AI (QAMAI) tool. Interrater reliability and stability were measured us-
ing ICC and Pearson’s correlation. Results: The total QAMAI scores were 22.32 ± 3.08 for
the intensivist, 24.68 ± 2.8 for the neurologist, 23.36 ± 2.86 and 26.32 ± 2.91 for the neu-
rosurgeons, representing moderate-to-high accuracy. The evaluators reported moderate
ICC (0.631, 95% CI: 0.321–0.821). The highest subscores were for the categories of accuracy,
clarity, and relevance while the poorest were associated with completeness, usefulness,
and sourcing. GPT-4o did not systematically provide references for their responses. The
stability analysis reported moderate-to-high stability. The readability assessment revealed
an FRE score of 7.23, an FKG score of 15.87 and a GF index of 18.15. Conclusions: GPT-4o
provides moderate-to-high quality information related to DHC for MMCAI, with strengths
in accuracy, clarity, and relevance. However, limitations in completeness, sourcing, and
readability may impact its effectiveness in patient or their relatives’ education.

Keywords: artificial intelligence; ChatGPT; decompressive hemicraniectomy; stroke

1. Introduction
The development of large language models (LLMs) has gained considerable ground

in medicine. ChatGPT, based on OpenAI’s series of generative pre-trained transformer
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(GPT) models, is among the most popular LLM-driven chatbots used by both patients and
practitioners. This increasing utilization has spurred numerous studies aimed at evalu-
ating the quality of the medical information provided by such models [1,2]. LLM-based
applications have been examined across a wide array of medical specialties, including
neurology [3,4], cardiology [5,6], infectious diseases [7,8], oncology [9–12], hematology [13],
gastroenterology [14,15], urology [11,16,17], gynecology and obstetrics [18,19], and emer-
gency medicine [20] as well as surgical disciplines such as neurosurgery [21] and head and
neck surgery [22,23]. While substantial research has explored the use of LLM in various
healthcare contexts—including medical education, clinical practice, research, and ethical
considerations—there remains a critical gap in the literature concerning their performance
in providing accessible medical information to laypersons, particularly patients and their
relatives. To our knowledge, no studies have specifically addressed the role of ChatGPT
or similar public LLM-based solutions in assisting relatives of critically ill patients to un-
derstand medical information in intensive care settings. This gap is especially pertinent in
critical care, where high-stakes treatments and life-or-death decisions often occur in the
wake of complex diagnoses. In such emotionally charged and cognitively overwhelming
situations, relatives are confronted with a barrage of complex medical information, which
they may struggle to fully comprehend. Consequently, they might seek supplemental infor-
mation from widely available and increasingly popular sources, including chatbot-based
platforms [24,25]. A particularly illustrative example is malignant middle cerebral artery
infarction (MMCAI), a severe condition associated with brain injury and edema, which
frequently necessitates decompressive hemicraniectomy (DHC) as a life-saving intervention
in neurocritical care [26].

This study seeks to evaluate the capacity of a state-of-the-art LLM to address common
questions posed by relatives about DHC and MMCAI, delineating its potential to support
families during critical care episodes.

2. Methods
2.1. Questions and Setting

GPT-4o (OpenAI, San Francisco, CA, USA) was tasked with providing explanations in
hypothetical conversations with relatives of patients diagnosed with MMCAI and candidates
for DHC. Twenty-five questions commonly asked by patients’ relatives regarding DHC in
case of an MMCAI were collected by 7 practitioners, including a board-certified intensivist
(refs. [1]), two neurologists (refs. [2,3]) and three neurosurgeons (refs. [4–6]). The questions
covered specific subtopics: indication (N = 3); surgical procedure (N = 3); postoperative care
(N = 7); prognosis (N = 4); outcomes (N = 4); ethical issues (N = 1); and rehabilitation (N = 3).
All questions were independently submitted twice, seven days apart, into the GPT-4o web
application interface (https://chat.openai.com, accessed on 8 August 2024). The complete set
of questions is available in Table 1. The generated responses were compiled into a document
provided to four evaluators (refs. [1,2,5,6]). See Supplementary Files S1 and S2.

Table 1. Questions frequently asked by relatives of decompressive hemicraniectomy patients for
malignant MCA infarct.

Questions

Indications:
1. What is a decompressive hemicraniectomy and why is it necessary in this case?

2. Are there any alternative treatments to decompressive hemicraniectomy for this condition?
3. Can the condition worsen if surgery is delayed, or do we have time to think about it?

Surgical Procedure:
4. How long will the surgery take?

https://chat.openai.com
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Table 1. Cont.

Questions

5. What are the possible risks and complications associated with this surgery?
6. What happens to the brain without the skull to protect it?

Postoperative Care:
7. After surgery, when will relatives be allowed to see the patient?

8. How soon will the patient wake up?
9. During the coma period, can the patient hear me and how should I talk to them?

10. How long will the patient need to stay in the ICU and hospital after the surgery?
11. What type of care and support will be needed at home?

12. Will the patient need permanent assistance?
13. When will the removed part of the skull be replaced?

Prognosis:
14. What are the chances of survival?
15. What is the functional prognosis?

16. What are the chances of a full recovery?
17. What factors influence the patient’s recovery?

Outcomes:
18. How long will it take to see the maximum improvements in the patient’s condition?

19. What is the long-term impact on the patient’s cognitive abilities?
20. Will the patient be able to recognize his relatives?

21. Are there any aids to daily living that will be needed?
Ethical Issues:

22. What are the ethical considerations for withdrawing life support if necessary?
Rehabilitation:

23. What does rehabilitation consist of and how long will it take?
24. How can family members support the patient’s rehabilitation at home?

25. Are there any new or emerging rehabilitation techniques that could benefit the patient?

Abbreviations: ICU = intensive care unit.

2.2. Quality Analysis

The study’s endpoints evaluated the accuracy, clarity, relevance, completeness, sourc-
ing, and usefulness of the answers, as independently reviewed by the multidisciplinary
team previously introduced, using the Quality Analysis of Medical Artificial Intelligence
(QAMAI) tool (Figure 1).
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The QAMAI tool [27] is a validated and standardized instrument specifically designed
to assess the quality of health information provided by AI chatbots. This tool is inspired
by the modified DISCERN [28] instrument (mDISCERN), a robust and widely adopted
tool for monitoring the quality of health information on websites, social media, and related
platforms. Each mDISCERN parameter is rated on a 5-point Likert scale ranging from 1
(strongly disagree) to 5 (strongly agree). These ratings are summed to form an aggregate
score (QAMAI score), which reflects the overall quality of the provided information. Addi-
tionally, the readability of the answers was assessed using the Flesch Reading Ease (FRE)
score, the Flesch–Kincaid Grade (FKG), and the Gunning Fog Index (GFI) [29].

2.3. Statistical Methods

Statistical analyses were conducted with the Statistical Package for the Social Sciences
for Windows (SPSS version 30.0; IBM Corp., Armonk, NY, USA). Accuracy, clarity, relevance,
completeness, reference, usefulness, and total QAMAI scores of GPT-4o answers were all
reported with means and standard deviations. Inter-rater reliability was evaluated using
the intraclass correlation coefficient (ICC). The stability of GPT-4o answers was tested using
Pearson’s correlation coefficient and was categorized as low (k < 0.40), moderate (0.40–0.60),
or strong (k > 0.60). A significance level of p < 0.05 was applied.

3. Results
The QAMAI scores of the answers provided by GPT-4o are presented in Table 2.

Total QAMAI scores were 22.32 ± 3.08 for the intensivist, 24.68 ± 2.8 for the neurologist,
23.36 ± 2.86 and 26.32 ± 2.91 for the neurosurgeons (p = 0.120), demonstrating moderate-to-
high quality information. GPT-4o scored the highest in accuracy (mean: 4.40/5, p < 0.001),
clarity (mean: 4.53/5, p < 0.001), and relevance of explanation (mean: 4.51/5, p < 0.001),
particularly for Ethical Issues and Rehabilitation subtopics. The lower subscores were
associated with completeness (mean: 4.02/5, p < 0.001), usefulness (mean: 4.26/5, p < 0.001),
and information sourcing, consistently scoring the poorest (mean: 2.85/5, p < 0.001),
particularly in postoperative care and prognosis subtopics.

Table 2. Quality Analysis of Medical Artificial Intelligence Scores.

Intensivist [1]

QAMAI
items

(5-Likert
Scale)

Indications
(n = 3)

Surgical
Procedure

(n = 3)

Postoperative
Care

(n = 7)

Prognosis
(n = 4)

Outcomes
(n = 4)

Ethical
Issues
(n = 1)

Rehabilitation
(n = 3)

Total
(n = 25)

Accuracy 3.67 ± 2.31 4.67 ± 0.58 4.14 ± 0.69 4.5 ± 0.58 4.5 ± 0.58 5 4.67 ± 0.58 4.36 ± 0.91

Clarity 5 3.67 ± 0.58 4.29 ± 0.76 3.75 ± 0.5 4.5 ± 0.58 5 4.67 ± 0.58 4.32 ± 0.69

Relevance 4 ± 1.73 4 4.57 ± 0.53 4 ± 0.82 4.25 ± 0.5 5 5 4.36 ± 0.76

Completeness 3 3 3.43 ± 0.98 3 3.5 ± 0.58 5 3.67 ± 0.58 3.36 ± 0.7

Sourcing 2.67 ± 0.58 3 2.71 ± 0.76 1 1.75 ± 0.96 1 3 2.28 ± 0.94

Usefulness 3.33 ± 1.15 3.67 ± 0.58 3.71 ± 0.76 2.75 ± 0.5 4 5 4 ± 1 3.64 ± 0.81

QAMAI total
score (/30) 21.67± 4.93 22 ± 1 22.86 ± 3.34 19 ± 0.82 22.5 ± 2.38 26 25 ± 2 22.32 ± 3.08
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Table 2. Cont.

Neurologist [2]

QAMAI
items

(5-Likert
Scale)

Indications
(n = 3)

Surgical
Procedure

(n = 3)

Postoperative
Care

(n = 7)

Prognosis
(n = 4)

Outcomes
(n = 4)

Ethical
Issues
(n = 1)

Rehabilitation
(n = 3)

Total
(n = 25)

Accuracy 4.67 ± 0.58 4.67 ± 0.58 4.29 ± 0.95 3.75 ± 0.5 4.25 ± 0.5 5 4.33 ± 0.58 4.32 ± 0.69

Clarity 4.67 ± 0.58 5 4.43 ± 0.53 4 4.75 ± 0.5 5 5 4.6 ± 0.5

Relevance 5 4.67 ± 0.58 3.71 ± 0.95 4 5 5 4.67 ± 0.58 4.6 ± 0.5

Completeness 4 ± 1 4 ± 1 4.67 ± 0.58 3.25 ± 0.5 3.25 ± 0.5 5 4 3.72 ± 0.79

Sourcing 3 3.67 ± 1.15 2.71 ± 0.49 2.75 ± 0.5 2.75 ± 0.5 3 3 2.92 ± 0.57

Usefulness 5 4.67 ± 0.58 4.43 ± 0.53 4 4.75 ± 0.5 5 4.33 ± 0.58 4.52 ± 0.51

QAMAI total
score (/30) 26.33 ± 2.08 26.67 ± 3.51 24 ± 3.56 21.75 ± 0.96 24.75 ± 1.5 28 25.33 ± 0.58 24.68 ± 2.81

Neurosurgeon [5]

QAMAI
items

(5-Likert
Scale)

Indications
(n = 3)

Surgical
Procedure

(n = 3)

Postoperative
Care

(n = 7)

Prognosis
(n = 4)

Outcomes
(n = 4)

Ethical
Issues
(n = 1)

Rehabilitation
(n = 3)

Total
(n = 25)

Accuracy 4.33 ± 1.15 4.33 ± 0.58 4.14 ± 0.69 4.5 ± 0.58 4.25 ± 0.5 5 4.33 ± 0.58 4.32 ± 0.63

Clarity 5 4.33 ± 0.58 4.14 ± 0.69 3.5 ± 0.58 4.25 ± 0.5 5 4 ± 1 4.2 ± 0.71

Relevance 4.33 ± 0.58 4 ± 1 4.14 ± 0.69 4.25 ± 0.96 3.75 ± 0.96 5 4.33 ± 0.58 4.16 ± 0.8

Completeness 4 4.33 ± 0.58 3.71 ± 0.49 3.75 ± 0.5 3.75 ± 0.96 4 3.33 ± 0.58 3.8 ± 0.58

Sourcing 3.33 ± 0.58 4 3 ± 0.82 2.5 ± 0.58 2.75 ± 0.5 3 3.67 ± 0.58 3.12 ± 0.73

Usefulness 4 ± 1 3.33 ± 0.58 3.57 ± 0.79 3.75 ± 0.5 3.5 ± 0.58 5 4.33 ± 0.58 3.76 ± 0.72

QAMAI total
score (/30) 25 ± 3 24.33 ± 2.52 22.71 ± 3.59 22.25 ± 1.71 22.25 ± 2.99 27 24 ± 2.65 23.36 ± 2.86

Neurosurgeon [6]

QAMAI
items

(5-Likert
Scale)

Indications
(n = 3)

Surgical
Procedure

(n = 3)

Postoperative
Care

(n = 7)

Prognosis
(n = 4)

Outcomes
(n = 4)

Ethical
Issues
(n = 1)

Rehabilitation
(n = 3)

Total
(n = 25)

Accuracy 4 3.33 ± 1.15 4.57 ± 0.53 4.5 ± 0.58 4.25 ± 0.5 5 4.67 ± 0.58 4.32 ± 0.69

Clarity 4.67 ± 0.58 4 ± 1.73 5 5 4.25 ± 0.5 5 5 4.72 ± 0.68

Relevance 5 4.67 ± 0.58 4.86 ± 0.38 5 4 ± 1.41 5 5 4.76 ± 0.66

Completeness 5 3.67 ± 1.53 5 5 4.25 ± 0.96 5 5 4.72 ± 0.74

Sourcing 3 3 3 3.5 ± 1 3 3 3 3.08 ± 0.4

Usefulness 4.67 ± 0.58 4.67 ± 0.58 4.86 ± 0.38 5 4 ± 1.41 5 5 4.72 ± 0.68

QAMAI total
score (/30) 26.33 ± 0.58 23.33 ± 5.51 27.29 ± 1.11 28 ± 1.41 23.75 ± 4.03 28 27.67 ± 0.58 26.32 ± 2.91

Each item is assessed with a 5-point Likert scale (strongly disagree, disagree, neutral, agree, strongly agree).
Abbreviations: QAMAI = Quality Analysis of Medical Artificial Intelligence Score.

The analysis of the GPT-4o answers, detailed in Table 3, shows moderate to strong
stability for all answers. Inter-rater reliability assessment suggested substantial agreement,
with an ICC of 0.631 (95% CI: 0.321–0.821). The readability assessment of the answers
revealed an FRE score of 7.23, an FKG score of 15.87, and a GFI of 18.15, appropriate for a
graduate or postgraduate level of education.

Table 3. Stability of GPT-4o’s responses.

QAMAI Items (5-Likert Scale) Pearson p-Value

Accuracy 0.408 0.001
Clarity 0.509 0.001

Relevance 0.469 0.001
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Table 3. Cont.

QAMAI Items (5-Likert Scale) Pearson p-Value

Completeness 0.437 0.001
Sourcing 0.282 0.002

Usefulness 0.610 0.001
QAMAI total score (/30) 0.616 0.001

Abbreviations: QAMAI = Quality Analysis of Medical Artificial Intelligence Score.

4. Discussion
Stroke remains a leading cause of death and disability worldwide, with 13.7 million

new cases and approximately 5.5 million related deaths reported annually [30]. Of these,
up to 10% are MMCAI, a condition often complicated by severe mass-effect edema [31].
Untreated mortality rates may increase to 80%, primarily due to severe intracranial hyper-
tension [32,33]. In this context, decompressive surgery, particularly DHC, has emerged as a
key intervention [26,31,34].

In this study, GPT-4o exhibited moderate-to-high levels of accuracy, clarity, and relevance,
aligning with reported findings on basic and specialized medical queries [1,35,36]. In the
literature, accuracy rates range from 36% to 90% [1]. However, these findings should be
interpreted cautiously due to the lack of standardized guidelines and validated benchmarks for
assessing the performance of LLM, which results in inconsistent evaluations across studies [1].
Studies investigating accuracy using a Likert scale have reported ratings exceeding 80% for
both GPT-3.5 and 4 [1,22,35], supporting that these models have significant potential for use in
medical education and decision-making support. Accuracy remains consistent for binary and
descriptive questions but declines with increasing contextual complexity, particularly in surgical
scenarios [1,35]. This may stem from the procedural nature of surgery, which is difficult to convey
through text-based interactions [1,2]. Similarly, advanced queries often require experiential and
cultural knowledge that humans intuitively grasp through both experience and non-verbal
communication but which may not be captured in the information explicitly provided to the
model. As a result, LLM may struggle with nuanced real-world contexts despite proficiency in
handling vast, detailed information. While these models can synthesize data effectively, they
struggle with evolving data and the procedural expertise that healthcare professionals develop
through hands-on experience and clinical training [37]. Finally, LLMs are limited by the cutoff
date of their training data, meaning they lack access to the most recent medical literature and
databases after that point. For instance, GPT-4o has been trained on information available up
to October 2023, limiting its ability to provide up-to-date medical guidance. To address these
limitations, advanced prompt engineering techniques but also fine-tuning, retrieval-augmented
generation (RAG), and tailored user interfaces can be employed to specialize LLM for context-
specific applications [38]. For instance, OpenAI recently introduced GPT-o1, a model designed to
enhance efficiency in high-order reasoning tasks through native integration of chain-of-thought
prompting [39,40]. Moreover, some LLM-driven solutions now offer dynamic access through
web browsing and integration with personal documents via dedicated user interfaces—although
the backend processes, including real-time retrieval architectures and grounding mechanisms,
remain largely opaque and underexplored. Evaluating the performance of these approaches in
similar applications could provide valuable insights into its potential improvements over GPT-4o.

Along these lines, GPT-4o did not systematically provide references, preventing the
users from verifying the validity of every answer. This limitation underscores a core issue
with GPT’s performance in sourcing information, as it often encounters difficulties in
this area, sometimes producing erroneous or fabricated references [41–43]. For instance,
Mishra et al. [44] examined GPT’s responses to queries on 40 common neurosurgical con-
ditions. They found that while the overall quality of the information was fair, 69% of
the references were inaccurate, with 34% being entirely fabricated. This issue is consis-
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tent with findings from Vaira et al. [45], who reported a 50% rate of false references in
answers to head and neck surgery questions. These concerns had already been raised by
Frosolini et al. [46] regarding GPT-3.5 and seem to persist in GPT-4o. In this context, RAG
also offers a promising approach for grounding LLM-generated information by integrating
real-time, verifiable sources into responses [47].

In line with our findings, previous studies [48–51] evaluating the readability of ChatGPT’s
medical responses have shown that while the AI can generate high-quality and detailed
information, it often fails to meet the recommended 6th-grade reading level typically advised
for patient education [52]. Instead, ChatGPT’s medical explanations are frequently written
at a college graduate level, limiting their accessibility and making it difficult for the general
population to fully understand the content. It has been demonstrated that simplifying patient
education materials significantly improves patient comprehension [53]. One study found that
when AI was prompted to lower the grade level of its responses, the readability of the content
improved considerably [54]. Despite the accuracy and depth of the information ChatGPT
provides, the complexity of its language may hinder its effectiveness in educating patients.

The analysis of GPT-4o’s responses across two sessions demonstrated moderate to strong
stability across most dimensions, with total score correlations indicating strong consistency.
Such consistency is crucial for maintaining the quality, reliability, and reproducibility of the
information provided [55]. This finding aligns with the over 90% reproducibility rates reported
in the literature [56–58]. Nonetheless, Ashrafi et al. [59], in a study involving a high volume of
repeated queries (741 questions, repeated 15 times), identified a tendency for ChatGPT to repeat
specific errors or sporadically provide incorrect responses. While this level of repetition exceeds
typical user interactions, it should be considered in decision-making contexts. This stochastic
behavior is inherent to the architecture of LLM and is compounded by the proprietary and
opaque nature of OpenAI’s models and infrastructure.

5. Limitations
The first limitation of this study is the moderate ICC value (0.631), which remains within

an acceptable range according to the existing literature [60]. This moderate value may be
attributed to the small sample size with substantial variability in responses due to discipline-
specific perspectives. To improve the robustness of future studies, a larger and more diverse
group of raters with varying expertise levels should be considered. A further limitation is the
relatively small number of questions (n = 25) used to assess GPT-4o’s performance. While these
were carefully selected to reflect common concerns, this limited sample may not fully capture
the breadth and variability of questions posed by relatives in real-world settings. Future
studies should consider including a larger, more randomized or crowd-sourced set of questions
for a more comprehensive evaluation. Another limitation is the absence of relatives from the
evaluation process in this preliminary study, precluding an assessment of the clarity of GPT-4o’s
responses from the perspective of non-professional caregivers. While healthcare professionals
assessed clarity, the best judges of how well GPT-4o informs patients and their relatives are, of
course, the patients and relatives themselves. Their perspectives would offer the most direct and
meaningful insights into the model’s effectiveness in real-world, patient-facing scenarios. This
could be implemented as part of a two-phase study with this first phase involving the expert
validation of medical content and the second phase incorporating feedback from patients’
relatives. Finally, our stability evaluation, based on repeating questions twice with a one-
week interval, is insufficient to fully assess the consistency of responses from a closed-source,
proprietary model such as GPT-4o. The model’s outputs may be influenced not only by its
architecture but also its underlying infrastructure with dynamic back-end processes, including
human-in-the-loop, customized training and pre/post-processing in/output adjustments,
which are opaque in such proprietary models.
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6. Perspectives
The future of LLM-driven applications in critical care public education hinges on

developing accessible, transparent, and ethically sound solutions. Prioritizing open-source
development will enable the creation of systems that are monitorable and auditable by
healthcare professionals, while being tailored to specific populations and conditions. These
systems should integrate advanced retrieval-augmented generation (RAG) techniques
to provide verifiable, up-to-date, and curated information, addressing current sourcing
limitations. Intuitive user interfaces will facilitate effective human–AI interaction, ensuring
that AI enhances rather than replaces clinical expertise, which is critical for safety and ethical
alignment. By improving readability and incorporating explainable AI principles, these
solutions will promote transparency and usability for both clinicians and patients, fostering
AI literacy in healthcare. Open-source, transparent LLM systems will also support thorough
validation and ethical scrutiny through prospective studies, incorporating rigorous patient
consent and data privacy measures.

From an ethical and legal standpoint, the potential impact of incomplete or inaccurate
AI-generated information on the decision-making of patients’ relatives must be carefully
considered. In high-stakes critical care contexts, families may rely heavily on readily accessible
explanations to guide their understanding and expectations. If not adequately contextualized,
such information could inadvertently shape consent and influence care-related decisions. To
address this risk, the future implementations of LLMs should incorporate safeguards such as
explicit disclaimers, prompts encouraging users to verify content with medical professionals,
and transparency features including source citations or confidence scores. These measures
are essential to ensuring that AI tools function as supportive educational aids rather than
substitutes for clinical judgment, thereby reducing the risk of misinformation and promoting
ethically responsible use in patient-facing communication.

Involving patients and families in development, alongside comprehensive trials, will
ensure that LLM-driven tools are not only technically proficient but also aligned with real-
world needs and ethical standards. This integrated approach addresses the key limitations
identified in our study and paves the way for responsible, effective AI implementation in
critical care education [61].

7. Conclusions
This study provides an analysis of GPT-4o’s ability to inform relatives about DHC for

MMCAI. Our findings indicate that GPT-4o delivers moderate-to-high-quality information
with relative stability, particularly in accuracy, clarity, and relevance. However, limitations
in completeness, sourcing, and readability may hinder its effectiveness in public education.
Studies involving all stakeholders, including larger multidisciplinary expert groups, are essen-
tial for robust and operable conclusions while evaluating LLM performance across various
critical care conditions is crucial for generalizability. As LLM-driven solutions evolve, their
role in medical communication must be carefully examined through open-source, transparent
development and rigorous validation studies. Future efforts should prioritize purpose-built
systems with improved readability, verifiable information sourcing, and intuitive interfaces, all
underpinned by strong ethical considerations and real-world clinical validation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci15040391/s1, Supplemental File S1, Supplemental Results:
GPT-4o’s first-round answers to the 25 questions submitted. Supplemental File S2, Supplemental
Results: Answers from GPT-4o to the second round for the 25 questions submitted, seven days later.

https://www.mdpi.com/article/10.3390/brainsci15040391/s1
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Glossary

Artificial Intelligence (AI)
Computer systems designed to simulate human intelligence, often used in
analyzing data, automating tasks, or assisting in medical education.

ChatGPT/GPT-4o
Generative pre-trained transformer, a type of large language model by OpenAI,
used here to answer medical questions for relatives of critically ill patients.

Decompressive Hemicraniectomy (DHC)
A neurosurgical procedure where part of the skull is removed to relieve
intracranial pressure, commonly used for severe brain swelling after a stroke.

Flesch Reading Ease (FRE)
A readability test measuring text complexity, with lower scores indicating
harder-to-read text. FRE is used to assess if medical explanations are accessible
to laypersons.

Flesch–Kincaid Grade Level (FKG)
A readability index indicating the grade level required to understand a text,
used to evaluate the accessibility of medical information provided by AI.

Gunning Fog Index (GFI)
A readability test for English text that estimates the years of formal education
needed to understand the text at first read.

Intraclass Correlation Coefficient (ICC)
A statistical measure used to evaluate the reliability of raters or measurements,
here applied to assess consistency among evaluators scoring AI-generated
medical information.

Large Language Model (LLM)
A type of AI model trained on vast amounts of text data to generate human-like
responses. Examples include ChatGPT and GPT-4o.

Malignant Middle Cerebral Artery Infarction A severe type of ischemic stroke involving brain swelling that may require
(MMCAI) surgery, like DHC, due to increased intracranial pressure.
Quality Analysis of Medical Artificial A tool for evaluating the quality of health information provided by AI, including
Intelligence (QAMAI) factors like accuracy, clarity, and usefulness.

Retrieval-Augmented Generation (RAG)
A technique in AI that retrieves information from external sources to improve
the accuracy of generated responses.

Statistical Package for the Social Sciences (SPSS)
A software suite used for statistical analysis, here employed to analyze the
reliability and quality of AI responses.
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Abbreviations

DHC Decompressive hemicraniectomy
FRE Flesch Reading-Ease
FKG Flesch-Kincaid Grade
GFI Gunning Fog Index
GPT Generative pre-trained transformer
ICC Intraclass correlation coefficient
LLM Large language model
mDISCERN Modified DISCERN
MMCAI Malignant middle cerebral artery infarction
QAMAI Quality Analysis of Medical Artificial Intelligence
RAG Retrieval-augmented generation
SPSS Statistical Package for the Social Sciences
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